Formulation Development, cGMP Manufacturing and Characterization of a Novel Transdermal Formulation for E/Z-Endoxifen

Jonathan M White, Nathan S. Duncan, William Sherman, Quentin Lawrence, Bradey Gould, Alison Wissmann, Michelle Kennedy, Elizabeth Glaze, Barbara Dunn, Daniel L. Boring, Seema Khan and Oukseub Lee

MRI Global, 425 Volker Blvd, Kansas City, MO

National Cancer Institute, 9606 Medical Center Dr., Rockville, MD

Northwestern University, Dept. of Surgery, Feinberg School of Medicine, 251 E. Huron, Chicago, IL

M1130-12-090

Jonathan M. White – jwhite@mriglobal.org, 816-326-5294

PURPOSE

To develop a pharmaceutically stable, transdermal delivery strategy for endoxifen for use in a prevention breast cancer clinical trial.

Endoxifen is a selective estrogen receptor modulator (SERM), structurally related to tamoxifen and 4-hydroxysterolamines.

Breast cancer prevention requires only that the breast be exposed to the drug; systemic exposure is both unnecessary and potentially harmful.

OBJECTIVES

1. A pharmaceutically stable transdermal/topical formulation
   a) Challenge – Endoxifen undergoes facile isomerization. It is important that the drug product not change over the course of the study, therefore either a stabilized form of the Z-isomer is needed since the Z-isomer is the active conformation, or a stable mixture (E/Z) would be required.

2. Clinical trial material for use in Phase I study
   a) Challenge - Material meeting US FDA regulatory requirements was necessary (i.e., material prepared in accordance with Good Manufacturing Practices (GMP) suitable for use in a Phase I trial).

3. Supporting analytical chemistry
   a) Challenge - Appropriately validated stability indicating HPLC methods were required.

RESULTS

Formulation

- Solubility studies showed endoxifen was soluble in ethanol but only had limited water solubility, therefore a balance between EtOH:buffer ratio was needed.
- Z-endoxifen isomerizes readily under a variety of conditions explored for topical dosage preparation (e.g., ethanol, ethanol/buffer) – see Figure 1.
- A formulation of purified Z-endoxifen in ethanol/phosphate buffer (~1:1 ratio of ethanol buffer) was also unstable – see Figure 2.
- By equilibrating Z-endoxifen into ~1:1 E/Z-endoxifen, it provided a stable option for formulation. This material appeared stable in various dosage strengths (e.g. 0.5%, 1.0%)
- It was noted that a 2.0% formulation could not be achieved due to the product precipitating out of solution after ~30 days.

Analytical

- Analytical method was developed based on a current method for Z-endoxifen and showed excellent resolution between the E- and Z-isomers.
- Validation was conducted in accordance with cGMPs and ICH guidelines. All protocol specifications were met.
- Stability was performed showing the dose formulation was stable over time.

CONCLUSIONS

- A pharmaceutically stable, topical dosage of E/Z-endoxifen was developed.
- 0.5%, 1.0% and placebo were manufactured on ~5 kg bulk drug product scale for each dosage.
- Prototype material was analyzed for shelf life stability and found to be stable over a period of six (6) months.
- cGMP manufactured material was analyzed and met specifications.
- cGMP manufactured material is currently on shelf life stability testing – initial results align with prototype results adding confidence to the stability.
- A stability indicating analytical method was developed and validated and is currently in use for release and stability testing.

FUNDING

This work was funded by the National Cancer Institute under contract HHSN261201100046C.